
  

Математические основы
информационной 

безопасности

Груздев Дмитрий Николаевич



  

Хеш-функции



  

Оригинальное сообщение

Сумма: 0x29C8 

Отправлено: 0xC8



  

Поддельное сообщение

Подделка: 0x27B6 - 0xB6
Оригинал: 0xC8



  

Подходящая сумма



  

Оригинальное сообщение

Отправлено: (0x29,0xE2,0x85,0xB5,0xD2,0xDC,0x43)



  

Поддельное сообщение

Подделка:

Оригинал:



  

Хеш-функции
Хеш-функция – легко вычислимая функция, 
преобразующая исходное сообщение 
произвольной длины (прообраз) в сообщение 
фиксированной длины (хеш-образ).

Коллизией для хеш-функции h называется пара 
значений x, y, x ≠ y, такая, что h(x) = h(y).



  

Применение хеш-функций
● ускорение поиска данных в БД;
● проверка целостности и подлинности 

сообщений
● для создания сжатого образа, применяемого 

в процедурах ЭЦП
● защита пароля в процедурах аутентификации



  

Требования к хеш-функциям
● Для данного значения h(x) невозможно найти 

значение аргумента x.
● Для данного аргумента x невозможно найти 

другой аргумент y такой, что h(x) = h(y).



  

Структура алгоритмов 
хеширования

1. Выравнивание сообщения по длине блока.

2. Разбиение сообщения на блоки.

3. Многократное применение простых преобразований к блоку.

4. Функция хеширования блока зависит от значения хеша 
предыдущего блока.

5. Хеш-образом сообщения является результат процедуры 
хеширования последнего блока.



  

MD5
Создан в 1991 г.

Размер хеша – 128 бит.

Число раундов 
шифрования для одного 
блока – 64. 



  

SHA-1
Создан в 1995 г.

Размер хеша – 160 бит.

Число раундов 
шифрования для одного 
блока – 80.



  

Использование функции 
шифрования в режиме CBC



  

Дифференциальный 
криптоанализ



  

Дифференциальный Криптоанализ

ДК – атака с подобранным 
открытым текстом 
(злоумышленник имеет 
возможность шифровать 
произвольные тексты).

Цель атакующего – получить 
некоторые знания о ключе 
(полностью восстановить 
или сократить перебор).



  

Вероятности дифференциалов

X1 и X2 – подобранные шифротексты.

ΔX = X1 X⊕ 2 - дифференциал

Разность текстов поступающих на S-блок: (X1 K⊕ 1) (X⊕ 2 K⊕ 1) = 
X1 X⊕ 2

При X1 X⊕ 2 = 0х63, Y1 Y⊕ 2 = 0x12 возникает в 160 случаях из 256 
(с вероятностью P1 = 5/8).

При Y1 Y⊕ 2 = 0х12, Z1 Z⊕ 2 = 0x49 возникает с вероятностью        
P2 = 1/2.

При X1 X⊕ 2 = 0х63, Z1 Z⊕ 2 = 0x49 возникает с вероятностью         
P = P1*P2 = 5/16.



  

Восстановление ключа

D = { (X1,X2) | X1 X⊕ 2 = 0х63 } - множество 
рассматриваемых пар шифртекстов.

Предположить K4 = k.

Для каждой пары (X1,X2) D∈
● Вычислить F(X1) = C1, F(X2) = C2.

● Вычислить ΔZ = S3
-1(C1 k) S⊕ ⊕ 3

-1(C2 k).⊕

Если доля ΔZ=0x49 примерно равна 5/16 от общего числа, 
то k – кандидат для K4.

Проверить для всех возможных значений K4.



  

FEAL-4
Fast data Encipherment Algorithm

Опубликован в 1987 г.

Размер ключа – 64 бита.

Размер блока – 64 бита.

Количество раундов шифрования – 4.



  

Функция Фейстеля

f – 32-битная функция.

G0(a,b) = (a+b (mod 256)) <<< 2;

G1(a,b) = (a+b+1 (mod 256)) <<< 2;



  

Дифференциалы

Для f при ΔX = 0x80800000  
ΔY = 0x02000000.



  

Заключительный раунд
L’ = 0x0200000000  ⊕ Z’

Y = L ⊕ R

P1 ⊕ P2 = 0x8080000080800000

C1, C2 – известны, то

Y1, Y2, Z’ - известны

Шифр определяется ключом K3 – 232 
варианта.



  

Time-memory trade off



  

Вскрытие ключа шифрования
Задача:

Заранее известен открытый текст и алгоритм шифрования. 
Необходимо восстановить ключ шифрования по шифртексту.

Варианты решений: 

● Полный перебор – слишком долго.

● Заранее просчитать и сохранить пары шифротекст-ключ – 
требуется много памяти.



  

Метод Хеллмана

В 1980 г Мартин Хеллман предложил метод 
Time-memory trade off. Метод  позволяет 
вычислить ключ за N2/3 операций, используя 
N2/3 слов памяти, но требует произвести 
предварительные вычисления.



  

Обозначения
C = Sk(P0)

P0 — известный открытый текст (стандартные поля документа, 
шаблонная фраза в заголовке).

Sk — шифрование открытого текста на ключе k.

R:C    K — «редуцирующая» функция, переводящая любой 
шифротекст в некоторый ключ (шифротекст длиннее ключа).



  

Цепочки ключей
Заранее вычисляются m цепочек 
длины t.

В таблице сохраняются первые и 
последние элементы цепочек.

Одинаковые ключи могут появляться 
разных цепочках, т.к. f не является 
изоморфизмом. В этом случае 
последующие ключи в цепочках 
также совпадут.



  

Восстановление ключа
Пусть надо найти ключ шифрования K для шифротекста С.

Ищем среди сохраненных последних элементов цепочек 
занчения R(C), f(R(C)), f2(R(C)), ..., ft-1(R(C)).

Если fp(R(C)) совпадет с окончанием цепочки, то 
восстанавливаем Kt-p-1 ключ этой цепочки.

Если SKt-p-1(P0) = C, то Kt-p-1 – искомый ключ, иначе продолжаем 
поиск.

Если ключ не найден, то его нет среди ключей в цепочках.



  

Радужные цепочки
Метод предложен в 2003 г. Филиппом Оечслин

Для каждой функции перехода следует применять новую 
редуцирующую функцию.

Окончания цепочек будут совпадать, только в случае, если 
коллизия произойдет на одной функции перехода.



  

Восстановление ключа
Восстановление ключа:

Дан шифротекст С, найти К – ключ шифрования.

Ищем среди сохраненных последних элементов цепочек занчения       
Rt-1(C), ft-1(Rt-2(C)), ft-1(ft-2(Rt-3(C))), ..., ft-1(ft-2(...(f2((R1(C)))..)).

Затраты времени и памяти:

m – количество цепочек, t – длина цепочек, t * m ≈ N.

2*m*KLEN – объем памяти для хранения цепочек.

(t-1)*t/2 – наибольшее число преобразований.



  

https://sesc-infosec.github.io/


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

