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Хеш-функции



  

Оригинальное сообщение

Сумма: 0x29C8 

Отправлено: 0xC8



  

Поддельное сообщение

Подделка: 0x27B6 - 0xB6
Оригинал: 0xC8



  

Подходящая сумма



  

Оригинальное сообщение

Отправлено: (0x29,0xE2,0x85,0xB5,0xD2,0xDC,0x43)



  

Поддельное сообщение

Подделка:

Оригинал:



  

Хеш-функции
Хеш-функция – легко вычислимая функция, 
преобразующая исходное сообщение 
произвольной длины (прообраз) в сообщение 
фиксированной длины (хеш-образ).

Коллизией для хеш-функции h называется пара 
значений x, y, x ≠ y, такая, что h(x) = h(y).



  

Применение хеш-функций
● ускорение поиска данных в БД;
● проверка целостности и подлинности 

сообщений
● для создания сжатого образа, применяемого 

в процедурах ЭЦП
● защита пароля в процедурах аутентификации



  

Требования к хеш-функциям
● Для данного значения h(x) невозможно найти 

значение аргумента x.
● Для данного аргумента x невозможно найти 

другой аргумент y такой, что h(x) = h(y).



  

Структура алгоритмов 
хеширования

1. Выравнивание сообщения по длине блока.

2. Разбиение сообщения на блоки.

3. Многократное применение простых преобразований к блоку.

4. Функция хеширования блока зависит от значения хеша 
предыдущего блока.

5. Хеш-образом сообщения является результат процедуры 
хеширования последнего блока.



  

MD5
Создан в 1991 г.

Размер хеша – 128 бит.

Число раундов 
шифрования для одного 
блока – 64. 



  

SHA-1
Создан в 1995 г.

Размер хеша – 160 бит.

Число раундов 
шифрования для одного 
блока – 80.



  

Использование функции 
шифрования в режиме CBC



  

Дифференциальный 
криптоанализ



  

Дифференциальный Криптоанализ

ДК – атака с подобранным 
открытым текстом 
(злоумышленник имеет 
возможность шифровать 
произвольные тексты).

Цель атакующего – получить 
некоторые знания о ключе 
(полностью восстановить 
или сократить перебор).



  

Вероятности дифференциалов

X1 и X2 – подобранные шифротексты.

ΔX = X1 X⊕ 2 - дифференциал

Разность текстов поступающих на S-блок: (X1 K⊕ 1) (X⊕ 2 K⊕ 1) = 
X1 X⊕ 2

При X1 X⊕ 2 = 0х63, Y1 Y⊕ 2 = 0x12 возникает в 160 случаях из 256 
(с вероятностью P1 = 5/8).

При Y1 Y⊕ 2 = 0х12, Z1 Z⊕ 2 = 0x49 возникает с вероятностью        
P2 = 1/2.

При X1 X⊕ 2 = 0х63, Z1 Z⊕ 2 = 0x49 возникает с вероятностью         
P = P1*P2 = 5/16.



  

Восстановление ключа

D = { (X1,X2) | X1 X⊕ 2 = 0х63 } - множество 
рассматриваемых пар шифртекстов.

Предположить K4 = k.

Для каждой пары (X1,X2) D∈
● Вычислить F(X1) = C1, F(X2) = C2.

● Вычислить ΔZ = S3
-1(C1 k) S⊕ ⊕ 3

-1(C2 k).⊕

Если доля ΔZ=0x49 примерно равна 5/16 от общего числа, 
то k – кандидат для K4.

Проверить для всех возможных значений K4.



  

FEAL-4
Fast data Encipherment Algorithm

Опубликован в 1987 г.

Размер ключа – 64 бита.

Размер блока – 64 бита.

Количество раундов шифрования – 4.



  

Функция Фейстеля

f – 32-битная функция.

G0(a,b) = (a+b (mod 256)) <<< 2;

G1(a,b) = (a+b+1 (mod 256)) <<< 2;



  

Дифференциалы

Для f при ΔX = 0x80800000  
ΔY = 0x02000000.



  

Заключительный раунд
L’ = 0x0200000000  ⊕ Z’

Y = L ⊕ R

P1 ⊕ P2 = 0x8080000080800000

C1, C2 – известны, то

Y1, Y2, Z’ - известны

Шифр определяется ключом K3 – 232 
варианта.



  

Time-memory trade off



  

Вскрытие ключа шифрования
Задача:

Заранее известен открытый текст и алгоритм шифрования. 
Необходимо восстановить ключ шифрования по шифртексту.

Варианты решений: 

● Полный перебор – слишком долго.

● Заранее просчитать и сохранить пары шифротекст-ключ – 
требуется много памяти.



  

Метод Хеллмана

В 1980 г Мартин Хеллман предложил метод 
Time-memory trade off. Метод  позволяет 
вычислить ключ за N2/3 операций, используя 
N2/3 слов памяти, но требует произвести 
предварительные вычисления.



  

Обозначения
C = Sk(P0)

P0 — известный открытый текст (стандартные поля документа, 
шаблонная фраза в заголовке).

Sk — шифрование открытого текста на ключе k.

R:C    K — «редуцирующая» функция, переводящая любой 
шифротекст в некоторый ключ (шифротекст длиннее ключа).



  

Цепочки ключей
Заранее вычисляются m цепочек 
длины t.

В таблице сохраняются первые и 
последние элементы цепочек.

Одинаковые ключи могут появляться 
разных цепочках, т.к. f не является 
изоморфизмом. В этом случае 
последующие ключи в цепочках 
также совпадут.



  

Восстановление ключа
Пусть надо найти ключ шифрования K для шифротекста С.

Ищем среди сохраненных последних элементов цепочек 
занчения R(C), f(R(C)), f2(R(C)), ..., ft-1(R(C)).

Если fp(R(C)) совпадет с окончанием цепочки, то 
восстанавливаем Kt-p-1 ключ этой цепочки.

Если SKt-p-1(P0) = C, то Kt-p-1 – искомый ключ, иначе продолжаем 
поиск.

Если ключ не найден, то его нет среди ключей в цепочках.



  

Радужные цепочки
Метод предложен в 2003 г. Филиппом Оечслин

Для каждой функции перехода следует применять новую 
редуцирующую функцию.

Окончания цепочек будут совпадать, только в случае, если 
коллизия произойдет на одной функции перехода.



  

Восстановление ключа
Восстановление ключа:

Дан шифротекст С, найти К – ключ шифрования.

Ищем среди сохраненных последних элементов цепочек занчения       
Rt-1(C), ft-1(Rt-2(C)), ft-1(ft-2(Rt-3(C))), ..., ft-1(ft-2(...(f2((R1(C)))..)).

Затраты времени и памяти:

m – количество цепочек, t – длина цепочек, t * m ≈ N.

2*m*KLEN – объем памяти для хранения цепочек.

(t-1)*t/2 – наибольшее число преобразований.



  

https://sesc-infosec.github.io/
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